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1 Summary
The recent rapid increase in performance of neural language models has surprised even leading experts
at the frontier of development. Though in large part not fully understood, modern language technology
is already permeating industry, education, personal life, and scientific research in multiple ways. These
developments bring particular challenges and chances for theoretical linguistics and the wider field of the
(cognitive / computational) language sciences. For one, the language sciences are challenged to solve
deep foundational issues regarding the role of language models in theoretical and empirical studies on
human language. For another, there are immense opportunities for using language technology as a tool
in linguistic inquiry, if its implications are understood well enough. Moreover, the rapid development of
language technology has outpaced our ability to develop well-grounded methods for understanding and
safely applying language models, whether in science or elsewhere. To help solve these methodological
problems, grown-and-tested theoretical concepts and established standards for empirical research from
the language sciences readily suggest themselves, but require further, dedicated development.

These issues are urgent and felt strongly across traditional disciplinary boundaries. Indeed, re-
searchers from diverse fields, spanning theoretical and experimental linguistics, computational linguistics,
psycholinguistics, natural language processing and, more generally, the cognitive sciences are troubled
by very similar problems in very different contexts of research. We are seeing a new emerging field
of interdisciplinary and methodologically diverse work at the interface between the (cognitive) language
sciences (broadly construed) and language technology (focused on neural language models, but not
exclusively so). At the heart of this field are foundational issues, touching on methodology and core
concepts, which are well-nigh impossible to be solved within a few disparate research projects. What is
required is an umbrella structure to unite scattered research efforts, to enable cross-fertilizing dialogue,
and to provide the grounds on which research communities can agree on shared values, concepts and
methods as the foundation for new field of language research pivoting around language modeling. We
therefore propose a Priority Program, LaSTing, which provides such a platform for community-wide, in-
terdisciplinary effort in order to provide common solutions for common problems.

2 State of the art and preliminary work
We live in very exciting times for anyone interested in language. The methodological basis for theorizing
about language and for explaining data pertaining to human linguistic processing and communication has
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been broadening steadily and fruitfully. For example, the last two decades have brought an experimental
turn in linguistics especially in subfields, such as syntax, semantics and pragmatics, which had so far
mostly relied on formal and analytic methods (Meibauer and Steinbach, 2011; Noveck, 2018; Sprouse,
2023). Traditionally experimental fields in the language sciences, like psycholinguistics, have seen a
rise in the use of computational models for more insightful analyses of subtle quantitative aspects
of empirical data (Crocker, 2010; Dotlačil and Brasoveanu, 2020; Erk, 2022). Yet, the most striking
methodological advances clearly happened in language technology with the advent of extremely powerful
Language Models (LMs), which not only seem to be able to predict language behaviour very accurately
but also —thanks to this very property— show astonishing practical value and are now beginning to
permeate many routines in business, education, science, and personal life; and promise to be highly
impactful in the future as well.

The trained instances of modern LMs which attracted wide-spread public attention have been devel-
oped at enormous costs mainly by major players in industry. Themain motivation behind LM develop-
ment was applicability, not transparency of the models, let alone scientific curiosity into the workings
of human language. Indeed, the formula for success of recent language technology is strikingly simple
and in part fortunate historical happenstance. While the mathematical foundations for models of neural
networks for language processing are several decades old (Elman, 1990; Hochreiter and Schmidhuber,
1997; Bengio et al., 2003), and the routines for pre-training current models build on long established
ideas of backpropagation, three main factors have arguably led to a fundamental breakthrough in the
applicability of statistical learning models for language during the last years. First, the invention of the
transformer architecture (Vaswani et al., 2017) allowed neural models of sequence processing to be
trained in parallel, thus allowing for scalability, i.e., the ability to efficiently train much larger models. Sec-
ond, driven largely by the gaming industry, we have hardware in the form high-performing processing
units (GPUs, TPUs) for massive parallel computation which but turned out to be excellent for training
the artificial neural network architectures underlying current LMs. Third, the internet made available vast
amounts of (unlabelled, unstructured) data for training these models.

The above description of the development and employment of modern LMs seems to suggest that
scientific fields concerned with human language on a theoretical or empirical basis, like linguistics, the
(cognitive) language sciences, and computational linguistics (all of which will be addressed with the um-
brella term language sciences for ease of reference in the following), have played no role at all and may
have —in part— even become obsolete. This initial impression is natural, but emphatically incorrect.
Eclipsed by the focus of public attention, scientists from many different fields have started to investigate
the behavioral and theoretical underpinnings of modern language technology (Wahle et al., 2023), in-
cluding early work from the cognitive language sciences (e.g., Linzen et al., 2016; Hu, Gauthier, et al.,
2020). Recent years have seen an emerging vibrant research strand of “LM-ology”, i.e., the scien-
tific study of language models. LM-ology is variably concerned with interpreting the behavior of LMs at
an input-output level (e.g., BIG-bench authors, 2023), shedding light on the inner representations and
mechanisms (“un-black-boxing”) of trained models (e.g., K. Clark et al., 2019), the impact of training and
fine-tuning routines (Ouyang et al., 2022), and characterizing potential limits of the capability of LMs from
an experimental, conceptual or mathematical point of view (e.g., Hahn, 2020; Binz and Schulz, 2023), or
by comparing models to humans at different levels of description (Shiffrin and Mitchell, 2023). However,
as with any emerging new field of interdisciplinary research, the proper goals, concepts and methods for
LM-ology are yet to be made precise. This is where input from the languages sciences is crucial. A
first major motive behind the present proposal is the necessity to sharpen the scientific profile of the
study of language models with established concepts and methods from the language sciences.

This kind of methodological, interdisciplinary effort is necessary, because current LM-ology lacks
a proper methodological foundation. Given the speed of development of models, the development
of methods that give lasting, generalizable results has not been able to keep up. This shows in many
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diverse areas, key examples of which are discussed in detail below. To put it in provocative terms, the
relevance of studies investigating the performance of the currently most prominent model on a quickly as-
sembled benchmark loosely resembling patterns of reasoning potentially relatable to some phenomenon
of interest has a half-life of just a couple of months and teaches us little about the inherent capabilities of
a class of models, let alone human language or cognition. Instead, what is required for the next couple
of years is communal effort to converge on proper standards for robust assessment of language mod-
els. Methodology is robust, in the sense intended here, if its results are generalizable (carrying over
with sufficient certainty to other models and data sets), transferable (insightful beyond the purposes of
LM-ology), and reproducible (with the same or different models and data sets). Robust methodology
also aspires to be as future-proof as possible, i.e., likely relevant for the next generation of models or
antagonistic examples. Concepts and methods from the language sciences promise to provide exactly
this if brought to bear appropriately.

Understanding the nature, workings and capabilities of LMs is relevant also for delineating the proper
way of using LMs in downstream applications. In the ideal case, we would be certain that for any possible
input, the resulting output will meet the criteria of adequacy relevant for the current use-case. But such
certainty is presently out of reach for most purposes given the highly complex and largely intransparent
nature of modern LMs; a fact which highlights the relevance of methods for robust assessment. Never-
theless, it is clear that we must strive towards what we here address as safe applicability of language
models, which we take to subsume critical aspects such as being conceptually sound (e.g., anchored
in “first principles” or established empirical knowledge), ideally validated (e.g., by mathematical proof
or other rigorous derivation) or at least stress-tested across a near-exhaustive traversal of possible
conditions of use, ethical (e.g., bias- and harm-free, or privacy-respecting), and also economical (i.e.,
minimizing data requirements and energy consumption).

Concern for safe applicability applies not only to practical applications (e.g., user-facing products),
but also to applications of language technology in science. While industry-driven applications may
naturally be very concerned about ethical and economical aspects, applications of language technology
for knowledge gain put particular emphasis on the soundness and validity aspects of safe applicability.
Indeed, LMs have been suggested to be helpful at almost all stages of common research cycles. To
begin with, LMs can assist during simple, auxiliary tasks, such as data processing, programming as-
sistance, or automatic visualization. More controversially, LMs could possibly be used in scientific
research to support or even replace human input. Again, this can be reasonably benign, as for ex-
ample in the case of assisting or replacing humans in simple data annotation tasks (Ziems et al., 2023).
Slightly more critical is the potential for automatic creation of experimental stimuli (Gandhi et al., 2023).
LMs may also be used inside of larger models, be it for applied or explanatory purposes, such as in
neuro-symbolic models (M. C. Frank, 2023). In the most extreme and controversially discussed cases,
however, LMs would be used as complete stand-ins for human intuition or human responses, as is the
case when LMs replace human experimental participants (Aher et al., 2023; Dillion et al., 2023; Harding
et al., 2023; Bavaresco, Bernardi, et al., 2024). It is obvious that the more important the correctness
of the LM’s performance is for the validity of the research it supports, the heavier the burden is on solid
understanding of the capabilities of the technology. A second major motivation for this SPP is therefore to
lay the methodological foundation for using novel language technology in theoretically-informed
applications, be that practical applications that draw on insights from the language sciences, or direct
applications within the language sciences for some explanatory purpose.

Computational, theoretical and empirical research into human language is particularly well positioned
to contribute to a better understanding of modern language technology and its safe applicability — and
indeed, linguists and language scientists have been among the first to contribute to assessment of the
linguistic capabilities in language models and the human-likeness of their behavior (e.g., Linzen et al.,
2016; Hu, Gauthier, et al., 2020; Wilcox et al., 2021). But modern language technology also raises
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Figure 1: Three pillars of research on language models in a new field of language science & technology.

deep foundational issues specific to the language sciences which are now surfacing pressingly in
relation to theoretical and empirical work (Fox and Katzir, 2024; Mahowald et al., 2024). These issues
must be addressed widely and explicitly to make progress on robust assessment and safe applicability
of the technology. Central issues revolve around the nature of LMs as a class of abstract models (What
are LMs models of?) and their proper role in the scientific research into human language (How can LMs
be used as explanatory tools for understanding human language?).

In sum, the present research landscape at the interface between the language sciences and language
technology consist of three tightly connected areas (see Figure 1): (i) advancing understanding of the
relevant technology through theoretically informed and methodologically sound robust assessment, (ii)
honing in on standards for safe applicability which are conceptually anchored in established knowledge
from the language sciences, and (iii) developing a deeper foundational understanding concerning
the nature of language modeling and its place in the language sciences. Progress in each of these
areas is largely dependent on progress in the others. It is impossible to solve everything at once with
a single-team, dedicated research project. Rather, distributed, interdisciplinary research efforts, which
are anchored in concrete research traditions or address concrete problems of practical relevance, will
need to be synergized to provide the basis for a new field of language science and technology for
research on and with language models. This, in a nutshell, is the main goal behind the proposal of
LaSTing.

To demonstrate that the structural support for this rising research field via a Priority Programme is
timely, relevant and possible, the following paragraphs will survey a number of concrete core issues (see
Figure 2) that loom large in the current research landscape along the interface between the language
sciences and language technology and that should be addressed by LaSTing. We emphasize that these
core issues are often highly connected, thus requiring cooperative interdisciplinary exchange. We also
document how the core issues arise in concrete instances of current research in rather diverse fields
of (applied) research and linguistic sub-disciplines, which have traditionally not interacted closely. Our
examples cover (computational) psycholinguistics, the cognitive neuroscience of language, language
acquisition, syntax, semantics, pragmatics, historical linguistics, discourse and dialogue, as well as the
philosophy of language and linguistics. Nevertheless, it needs to be emphasized that the given examples
are by no means exhaustive, but only intended to demonstrate that there is a crisp set of shared
problems that re-occur, over and over again, across a wide range of seemingly unrelated research
areas, which clearly shows that a new interdisciplinary field of research on and around languagemodeling
is emerging and requires shaping as provided by LaSTing.
vBehavioral Assessment. The most obvious way of investigating the input-output behavior of gener-
ative models is to use what we here call behavioral assessment (in allusion to behaviorism from psy-
chology, which is also only concerned by observable behavior and shuns speculation about internal in-
formation processing). Behavioral assessment usually consists of benchmark testing when performance
issues are relevant (e.g., BIG-bench authors, 2023) or of treating models like human subjects in a be-
havioral psychological experiment when we care for human-likeness of their input-output behavior (e.g.,
Binz and Schulz, 2023). Yet, in either domain, there are a lot of seemingly arbitrary researcher degrees
of freedom, which as such should already be alarming from the point of view of good practices of sci-
entific inquiry (Chambers, 2017; Wieling et al., 2018). It is well-known that predictions of LMs depend
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Robust Assessment Safe Applicability

vBehavioral Assessment (vBehAss) vTask Decomposition Models (vTaskDec)
What are adequate, robust methods of experimentally as-
sessing the (abstracted, linguistic) capability of an LM
based on its input-output behavior? What is a valid com-
parison of machine predictions to human behavior?

What are best practices for using LMs as part of a larger
(theoretically informed) composition of the task to be
solved (e.g., in agent models, applications like RAG, or
explanatory, neuro-symbolic cognitive models)?

vRepresentations & Mechanisms (vRepMec) vResource Efficiency (vResEff)
Which information is reliably retrievable from LMs’ latent
representations (embeddings) for linguistic/explanatory
purposes or for understanding the inner workings of LMs?
How can we distill the abstract computational processes
that generate an LM’s behavior?

How can we solve problems of data-hunger and com-
putational costs (training and inference), e.g., by taking
human-like inductive biases into account, or using more
informative curated data? How can we use synthetic data
and machine judgements to solve theoretical issues?

vTraining & Optimization (vTrainOpt) vAlternative Models (vAltMod)
How can we understand LMs in terms of their optimiza-
tion, e.g., in terms of properties of the training data, their
internal inductive biases, the training objective etc.? How
does that compare to human language learning?

How can language science benefit from alternative mod-
els beyond text-to-text LMs, e.g., by embracing multi-
modality, interaction, dialogue, or more cognitively plau-
sible model architectures?

Foundations

vOntological Status (vOntStat) vExplanatory Potential (vExplPot)
Are LMs models or theories of language? What exactly
does an LM predict (occurrences frequencies, behavior
of idealized speaker, individualized speakers, …)?

How can novel language technology be used as or in sup-
port of explanations, e.g., of linguistic phenomena, empir-
ical or experimental data in the language sciences?

Figure 2: Core issues at the interface between the language sciences and language technology.

in non-systematic ways on properties of the input prompts (e.g., Webson and Pavlick, 2022; Leidinger
et al., 2023). Looking at the common task of multiple choice selection (of which the standard language
modeling task —missing- or next-word prediction— is arguably a special case), there is presently no
consensus on how to precisely determine the predictions of a givenmodel. There is even leeway in
the way the probability of the next word in a sequence is to be computed precisely if complex models use
particular tokenization schemes (Oh and W. Schuler, 2024; Pimentel and Meister, 2024). Naive ways of
calculating predictions for multiple-choice tasks are known to be biased in non-human ways (Zhao et al.,
2021; Holtzman et al., 2021). While disparate (ad hoc) solutions for de-biasing or prompt-engineering
abound, different methods of assessment can given different results for different models (Hu and Levy,
2023; Tsvilodub, H. Wang, et al., 2024). The kind of assessment chosen may relate in intricate ways to
aspects similar to performance-related factors or task-demands in human studies (Hu and M. C. Frank,
2024). At the heart of these problems is, arguably, the lack of foundational consensus on what LMs
are capable of predicting due to their training and formal design (see vOntStat). Moreover, there are
good reasons to judge system performance or abilities on more than just accuracy of output (Shiffrin
and Mitchell, 2023; Mondorf and Plank, 2024). In short, all of these considerations call for community-
wide reflection on best practices of conducting behavioral assessment in a way that is fair to both
humans and machines, in parallel to established considerations in fields like Comparative Psychology
(Hagendorff, 2023; Lampinen, 2023).

A concrete example for the importance of reflection on how to assess predictions of neural language
models come from recent research in computational psycholinguistics. A prominent theory of process-
ing difficulty is surprisal theory, which maintains that human effort in incremental processing of language
can be predicted well by a measure of next-word surprisal (Levy, 2008). Concrete predictors for empirical
validation of this theory usually come from language models and have been shown to provide good fit
to measures from self-paced reading (Smith and Levy, 2013), EEG (S. L. Frank et al., 2015), or eye-
tracking (Demberg and Keller, 2008). However, as recent research has shown, predictions from larger
and generally better performing language models provide worse predictions for human data (Oh
and W. Schuler, 2023). This raises fundamental questions of how to obtain predictions from language
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models and how to define adequate link functions to map these predictions to (explanatory variables
for) experimental data from humans. In the specific case of surprisal theory, it seems that we require
a more sophisticated, parameterized link function to accommodate for the usually too confident predic-
tions of high-performing models (Liu et al., 2024). This issue, while arising here in the concrete context
of established research in computational psycholinguistics, is structurally similar to the problem of over-
confidence in the context of other multi-choice prediction tasks (e.g., Kumar, 2022; Si et al., 2022). In
sum, the example shows how tightly related issues of behavioral assessment affect otherwise unrelated
research areas, thus requiring structures that foster common solutions for common problems.
vRepresentations & Mechanisms. Vector embeddings have emerged as a very powerful representa-
tional format for word and sentence meanings, from static non-contextualized (e.g., Mikolov et al., 2013)
to contextualized representations (e.g., Peters et al., 2018). Yet, deep lingering questions remain, such
as in how far embeddings can capture subtle aspects of linguistic productivity and compositional meaning
(e.g., Erk, 2012; Hupkes et al., 2020; Y. Yao and Koller, 2022). In the context of LMs, a prominent open
research question is which kinds of (conceptual or linguistic) knowledge are represented in the internal
representations during a forward pass. Many works have therefore investigated specifically the mecha-
nisms underlying language models with an eye to discovering processing steps and representations that
link to known linguistic categories or processes, in particular related to parsing and syntax (K. Clark et al.,
2019; Hewitt and Manning, 2019; Tenney et al., 2019; Müller-Eberstein et al., 2022; Waldis et al., 2024).

To fully understand internal representations in a neural network, we arguably have to understand
the information provided by the representations for the larger computational process that is performed
by the network (Rahwan et al., 2019; Harding, to appear). Issues of mechanistic interpretability are
therefore a very prominent topic of ongoing research in machine learning and NLP. Yet, owing to relative
novelty of these approaches, current methods may yet require conceptual ripening, additional valida-
tion and stress-testing. Some currently popular methods, e.g., the logit lense (nostalgebraist, 2020),
may yield interesting and seemingly interpretable results, but currently lack a theoretical or mathemat-
ical justification. Other methods promise clearer paths towards conceptual grounding, as they revolve
around counterfactual notions of alternativeness, a topic well-researched in theoretical and experimental
linguistics (Gotzner and Romoli, 2022) and relevant for causal explanation (e.g., Geiger et al., 2021). For
example, mechanistic attribution methods like contrastive explanations (Yin and Neubig, 2022), amnesic
probing (Elazar et al., 2021), causal mediation analysis (Vig et al., 2020), or activation or path patch-
ing (Meng et al., 2024), all entail comparison with a counterfactual input or activation pattern. These
alternatives are currently chosen primarily based on technical requirements (e.g., for “empty” or “neutral”
activation patterns) or selected based on pre-theoretic intuition. Yet, with an eye towards conceptual
soundness of robust methodology, these should ideally be anchored in theories of alternative expres-
sions (Katzir, 2007; Rohde and Kurumada, 2018) and meanings (Beaver et al., 2017; Buccola et al.,
2021), drawing on ideas from syntax, semantics and pragmatics. Similarly, applications of methods like
circuit analysis (e.g., K. Wang et al., 2022; Merullo et al., 2024) often require decomposition of the task
which is presumed to be performed, so that for many non-trivial cases of language processing extant
linguistic analyses and empirical results should serve as guidance (see vTaskDec). In sum, we expect
that linguistic concepts play a crucial role for interpretability of language models, just as concepts
that are intelligible for humans matter for interpretation of deep neural networks in general (Kim et al.,
2018; Marks et al., 2024).

An exciting example of vibrant current work wheremodern language technology and the language sci-
ences have largely overlapping interests concerning internal representations and interpretability comes
from computational cognitive neuroscience of language. There is a growing interest in comparing la-
tent representations from LMs with human brain activity during language processing (Gauthier and Levy,
2019; Caucheteux and King, 2022; Schrimpf et al., 2021). Yet controversies exist, be it general method-
ological (Antonello and Huth, 2023) or specific linguistic issues, such as whether correlation is driven by
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syntactic or more semantic features (Kauf et al., 2024; Fresen et al., 2024). Settling such issues requires
identifying where LMs perform which operation, which in turn requires better grasp on what embeddings
represent and how LMs compute with the available information. Concretely, the prominent method of
neural decoding uses latent representations from LMs to predict human brain activation patterns for iden-
tical stimuli (Gerven et al., 2019). This mapping relies on machine learning tools, but frequently resorts
to simple linear regression. To ensure safe methodology, the choice of adequate mapping should be
informed by robust results from interpretability studies, which is what, in turn, requires cross-disciplinary
exchange (cf., Beinborn et al., 2023). Looking ahead, the currently prevalent transformer-based archi-
tecture may not be the ideal comparison to human language processing, since it assumes that all prior
linguistic input is available verbatim at all times (but needs to be selectively attended to). Human pro-
cessing, on the other hand, relies on compressed representations of prior input in memory. Whence
that recently developed alternative model architectures, like selective state space models (Gu and Dao,
2023) or extended long-short term memory models (Beck et al., 2024), might provide a clearer analogue
to human representation during language processing (vAltMod).
vTraining & Optimization. To fully understand a trained LM for safe applications, we must also con-
sider a functional, teleological perspective (Rahwan et al., 2019; McCoy et al., 2024), i.e., the complex
interaction between: (i) the system’s architecture, (ii) the training task (objective function), (iii) the algo-
rithmic optimization strategy, and (iv) composition of the training data. In the ideal case, mathematical
results may give us certainty that particular properties must or cannot possibly ensue (e.g., Hahn, 2020).
But matters are complex since modern LMs are often optimized iteratively, using different training ob-
jectives, data sets and optimization techniques (e.g., Ouyang et al., 2022), and may be closed source.
To ensure safe applicability, it is therefore important to strive for generalizable and transferable, if not
future-proof insights into the effects of training and optimization.

An important contact area between the languages sciences and language technology where these
issues are prominently discussed in recent work is language acquisition, with possible implications for
syntactic theory. One common approach is to study learnability under controlled variation of the train-
ing data, the model size etc., similar to Artificial Language Learning tasks (Culbertson and K. Schuler,
2019). To study the impact of training regimes and model architecture, the popular BabyLM Challenge,
first held in 2023, set the task to train neural language models with training data roughly commensu-
rable with the amount of language input which children are exposed to during first-language acquisition
(Warstadt, Mueller, et al., 2023). Many contributions explored potentially more efficient training regimes
(see vResEff) inspired by human language learning (e.g., Bunzeck and Zarrieß, 2023). Training LMs
on realistically sized, but systematically manipulated input also helps to shed light on the inductive learn-
ing biases implicit in LMs. In this way, LMs might serve, effectively, as miniature models for studying
language learning under controlled laboratory conditions (Warstadt and Bowman, 2024). Highly inter-
esting questions at the syntax-technology interface arise, such as whether LMs can learn rare syntactic
constructions from generalization or only from memorization (Misra and Mahowald, 2024) or whether it
is harder for an LM to learn an artificially constructed language which is considered harder to learn in
common theories of syntax (Kallini et al., 2024). Importantly, concerns of (the limits of) learnability quickly
also lead to considering alternative model architectures (see vAltMod).
vTask Decomposition Models. When expensive fine-tuning is not an option, an attractive strategy to
coerce LMs to perform a difficult task, is prompt engineering (e.g., Kojima et al., 2022; Wei et al., 2022).
Yet, more recently, there is growing awareness that a safe application of LMs may require more control
over the reasoning process behind the output generation than can be guaranteed by a single forward
pass. Consequently, LMs are increasingly used as parts of larger applications, ranging from relatively
simple, general-purpose systems like retrieval augmented generation (RAG) (Li et al., 2022), via more
open-ended problem-solving strategies like tree of thought reasoning (S. Yao et al., 2023), to full fledged
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agent models for planning, interaction or robotic control (Huang et al., 2022; Park et al., 2023; Richter
et al., 2023). These LM-fueled applications are, essentially, constitutive of (yet) another wave of interest
in hybrid neuro-symbolic models (Garcez and Lamb, 2020).

This development is highly relevant for research at the interface between NLP and the language
sciences, for example, in the contact area of linguistic pragmatics. For one, specialized complex tasks
may benefit from theoretically-informed task decomposition, as supplied by recent pragmatic models
(e.g., M. C. Frank and Goodman, 2012; Franke and Jäger, 2016). Relevant applications combining
linguistic task-analysis with neural network components include structured question-answering (Bosselut
et al., 2021) and pragmatic language generation (Andreas and Klein, 2016; Shen et al., 2019; Zarrieß
and Schlangen, 2019). For another, it becomes attractive to explore neuro-symbolic cognitive models
designed to predict or explain human reasoning and choice behavior. Such hybrid models have a
long history and have recently started to integrate LMs as generative components, e.g., for generation of
categorical contingencies for probabilistic reasoning (Lew et al., 2020; Tsvilodub, Franke, and Carcassi,
2024), translation of natural language to code for structured inference (Wong et al., 2023), or as scoring
functions, supplying human-like notions, e.g., of relevance, for downstream numerical computation (Park
et al., 2023; Zhang et al., 2023). Yet, for each contribution of an LM inside a neuro-symbolic model
we must ascertain that its contribution is what we expect it do be (see vBehAss). Indeed, it is not
obvious how predictions from LMs should be supplied inside of models that aspire to predict likelihoods
for empirical data (Franke, Tsvilodub, et al., 2024), so that it requires careful methodological reflection
on how trustworthy the evidence accrued by such hybrid models is for scientific inquiry (see vExplPot).
Finally, since neuro-symbolic models often have a modular internal structure (Fodor, 1983), this ties in
to recent discussions after modularity in human (pragmatic) reasoning (Allott, 2023) and the explanatory
potential of inherently modular alternative neural architectures as ways of achieving higher cognitive
plausibility, generalizability and mechanistic interpretability (Ponti et al., 2023) (vAltMod).
vResource Efficiency. Modern LMs are resource-demanding, requiring huge data sets for training, as
well as massive computational power, memory, and energy for training and inference. While scaling laws
predict that increasing the size of models and training data will lead to increased performance, there
is also a growing emphasis on developing smaller, more efficient models at similar performance with
reduced computational costs (e.g., Touvron et al., 2023). Yet, there are areas where resource demands
arguably cannot easily be solved by engineering solutions alone, e.g., in cases of low-resource languages
with a small number of speakers or less recorded data in digital form.

Sparse resources are a chief concern for applications in comparative-historical linguistics and
typological linguistics. There are only about 6,000 extant languages, and the number of languages
with sizable documentation is at least an order of magnitude smaller. Also, data availability across lan-
guages follows a Zipfian distribution, with the vast majority being concentrated on a small number of
languages. Yet it is also in these areas that integration of LM-based research methods promises to be
very fruitful. For example, the prevalent practice in computational historical linguistics for automatically
inferring language family trees heavily relies on manual annotation of cognate words, which creates a
bottleneck of data sparseness (Jäger, 2019). Machine Learning methods hold great promise in autom-
atizing annotation of cognate words (e.g., Jäger et al., 2017; List et al., 2021). Recent research has
shown that transformer-based deep learning models improve upon the state of the art (Akavarapu and
Bhattacharya, 2024). Going forward, it is promising to develop methods for extracting phylogenetically
informative features from data sources that are both ecologically more realistic and easier to obtain than
word lists, such as texts and sound recordings. Moreover, language technology can also aid the doc-
umentation of endangered and low-resource languages (e.g., ImaniGooghari et al., 2023; Tanzer
et al., 2023). An essential step in language documentation is the compilation of reference grammars
which are understandable by humans and can be used as stepping stone for downstream tasks such as
language preservation/revitalization efforts. LMs hold a great potential in assisting grammar compilation.
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Fine-tuning an LM for a target language involves the implicit induction of grammatical regularities, which
can be extracted explicitly in a later step. This second step of inferring explicit grammatical generaliza-
tions from interviews with native speakers / trained LMs can likewise be assisted by LM technology. Yet,
all of these examples naturally presuppose that the tools are appropriate for the specific purposes (see
vBehAss) and are used appropriately for knowledge gain (see vExplPot).
vAlternativeModels. The primary focus of recent languagemodels has been on text-to-text tasks (Tou-
vron et al., 2023; Brown et al., 2020). A common criticism of text-only LMs is that they may lack genuine
understanding due to the absence of grounding in real-world experiences (Bender and Koller, 2020; Yiu
et al., 2023). Earlier, theoretically driven applications have incorporated visual elements, such as images
or video, as forms of textual grounding (e.g., Mao et al., 2016), and customer-facing products like Chat-
GPT and Claude have integrated recognition and generation of other modalities, like pictures as well.
But recent vision-and-language models (like CLIP Radford et al., 2021) bring their own challenges for
important linguistic issues, such as compositionality (Thrush et al., 2022) or pragmatic understanding
(Bavaresco, Testoni, et al., 2024) (see vBehAss vRepMec), and it remains unclear whether these mod-
els can meet the philosophical criteria for understanding (Chalmers, 2023; Schlangen, 2023b) or more
accurately represent human language abilities (Mahowald et al., 2024).

An exciting area of productive work at the interface between language technology and the language
sciences is research onmulti-modality, interaction and dialogue. Indeed, a significant limitation of text-
to-text models, when compared to human language processing, is the omission of supplementary cues
such as intonation, prosody, or accompanying gestures and facial expressions (Vigliocco et al., 2014).
Furthermore, current chat models are far from functioning as full-fledged dialogue agents (Kopp and
Krämer, 2021; Schlangen, 2022, 2023c). Therefore, it is important to consider alternative model ar-
chitectures, data sources, and training objectives, which may be more conducive to the scientific
investigation of human language than current standard language models. Alternative approaches
may explore different training objectives, such as based on interaction with a static environment (Hill et
al., 2020) or genuine interaction (Chalamalasetti et al., 2023; Schlangen, 2023a). Another direction is to
study language abilities emerging in the context of simulated linguistic interaction (Lazaridou, Potapenko,
et al., 2020; Lazaridou and Baroni, 2020; Ohmer et al., 2022; Tsvilodub and Franke, 2023). In sum, tying
in with the general reflection on the nature of current language technology (see vOntStat) it requires
critical reflection on scientifically more useful modeling architectures (see related remarks on vRepMec
and vTaskDec).
vOntological Status. Many concrete practical problems of understanding and applying modern lan-
guage technology root in foundational questions of what exactly LMs are supposed to be. There is
controversy about whether current LMs could possibly be considered models or theories of language
(Pater, 2019; Potts, 2019; Piantadosi, 2023; Kodner et al., 2023; Katzir, 2023). LaSTing will contribute
to foundational conceptual questions relevant for the language sciences, such as: What does modern
linguistic theory aspire to explain, and which of these questions are (partially) addressable by current lan-
guage technology (vExplPot)? Which alternative models or technologies would we need, which may not
be application-efficient, but would serve as better tools for knowledge gain (see vAltMod)? How much
must/may we anthropomorphize generative AI in research or in public-facing science communication
(Shanahan, 2023; Shanahan et al., 2023)?

These high-level questions impact also very concrete applications and empirical case studies, in par-
ticular by asking: if some safe use of language technology is to be explanatory or predictive, what
exactly is it that we are explaining or predicting? In many cases, this is highly non-trivial. For exam-
ple, an LM pre-trained on (written) text may be said to capture the occurrence frequencies of (written)
text. Later steps of fine-tuning, however, will change the predictions. In what way? Are modern, fine-
tuned models predicting, or capable of predicting, behavior of idealized speakers, average speakers, or
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stereotypes? These issues show parallels with foundational questions known from experimental
psychology, when it comes to learning about individual behavior from average performances (e.g., Estes
and Maddox, 2005). Questions of individual differences are increasingly in the focus also in empirical
studies on language acquisition and processing (Kidd et al., 2018). Recent studies into impersonation
are beginning to explore similar issues also for language models (e.g., Deshpande et al., 2023; Salewski
et al., 2023; Škrjanec et al., 2023). This will likely become even more important also for applications,
when it comes to studying how human speakers quickly adapt to their interlocutors (Brennan and Hanna,
2009) and how this can be mirrored in machines for personalized assistants. All of these issues have
an empirical and a technical component, and they reach deep into concerns of other core issues (see
vBehAss and vRepMec), showing that structures that facilitate cross-disciplinary effort, like the pro-
posed Priority Programme, are required for progress.
vExplanatory Potential. As described with several concrete examples above, language technology
can be used as a tool in linguistic research in multiple ways. Looking into future possibilities, LMs could
be used, for instance, to automatize the creation of (text-based) experimental stimuli, e.g., for use in
reading studies. Creation of experimental stimuli by human experts can introduce biases (cf., H. H. Clark,
1973), so we should be open-minded but careful concerning the prospects of synthetically generating
experimental materials. Another context in which LMs may aid, but also influence empirical studies in
the language sciences is where LMs are used as partners for dynamic interaction with human participants.
Naturally, all of these use casesmust all be scrutinized, conceptually and empirically, for machine-induced
biases that may affect the eventual empirical results.

The case for careful scrutiny is even more pressing when data is created that itself is analyzed, such
as to overcome problems of data-sparsity in low-resource cases (see vResEff). An important founda-
tional question that the field needs to address is when to accept machine judgements as scientific
evidence for or against a theoretical idea, hypothesis or explanation. For example, the experimental
turn in linguistics has brought a vivid discussion about whether, e.g., in syntax, empirical acceptabil-
ity judgements should inform theoretical accounts (Sprouse, 2023). Similar questions will have to be
answered by the concerned community about the evidential value of machine output, too (e.g., Tsvilo-
dub, Marty, et al., 2024). This necessary foundational discussion will partly overlap with the question of
whether it is acceptable to replace human subjects with LMs in psychological experiments (Aher et al.,
2023; Dillion et al., 2023; Harding et al., 2023), but the case is much more subtle and important for the
language sciences, where that which the technology is aimed to capture is (part of) the object of inquiry
of the scientific discipline. Depending on what we may safely take a model’s prediction to be about (see
vOntStat), it may be prudent to accept the judgements of a powerful statistical learner as (additional)
evidence for claims about, say, language structure. However, even if we should not consider language
model predictions as theoretical evidence, these are matters that require gradual consensus formation
in the community, which must be triggered by increased awareness of these issues and structures that
facilitate repeated exchange, as promoted by this Priority Programme.
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